
Table of contents

Much of the basic DTS feature documentation in this file was
assembled in part from other tutorials and docs created by
various members of the Garage Games Community, most
notably Joe Maruschak, Logan Foster, Tim Gift and Clark
Fagot. Also, special thanks to Pavol from Caligari, Stan Me-
lax and the beta testers like Craig Fortune who weren’t afraid
our software would erase their hard drives.

Getting Started.. 2
 General Information .. 2
 Installation... 2
 Using the Scene Editor ... 3
 Using Object notes ... 3
 Exporting to .x to lock object scale ... 4
 Skeletal vs Object Animation .. 4
 Positioning the axes of objects ... 4
 Manipluating axes in gameSpace... 5
 Parenting Objects ... 5
 Parenting with Bones.. 5
 Parenting with Groups .. 5

Configuring DTS Material Properties........................ 6
 Object Triangulation.. 6
 Materials For Torque... 6
 Default Material Setup .. 6
 Texture Priority.. 6
 DTS Material Properties ... 7
 Detail Mapping.. 7
 Mipmap Control .. 7

Using the features of the DTS Format 8
 The DTS Hierarchy ... 8
 The Bounds .. 9
 Detail Levels ... 9
 AutoDetail Levels .. 9
 Collision Objects .. 10
 Billboards ... 10
 Billboard Detail Levels ... 10
 AutoBillboard Detail Levels .. 10
 Mesh Sorting...11

DTS Animation... 11
 Types of Animation Supported..11
 Animating for Torque.. 12
 Sequence Markers... 12
 Sequence Marker Attributes .. 12
 Enable/Force Animations... 13
 Visibility Animation ... 13
 IFL Animation... 13
 Ground Transform.. 13
 Threads.. 14
 Blend Animations ... 14
 Blend Reference Time ... 14
 Configuration Files (.cfg).. 15
 Player Sequences ... 16
 Vehicles Sequences .. 16
 Weapon Sequences .. 16
 Triggers.. 17

Named Nodes... 18
 Using Named Nodes.. 18
 Player Nodes ... 18
 Vehicle Nodes.. 18
 Weapon Nodes .. 19

Using .CS files ... 19
 The .CS Script file.. 19

Using the show tool .. 20
 The ShowTool .. 20
 Loading a Shape.. 20
 Detail Levels .. 20
 Viewing Animations.. 21
 Transitions ... 21

This Exporter was Created by
Mike Jarosch and Matt Summers

of Dark Industries

trueSpace/ gameSpace - Torque DTS Exporter Documentation2 trueSpace/ gameSpace - Torque DTS Exporter Documentation 3

General Information
This document assumes a basic level of familiarity with
gameSpace or trueSpace and is simply a general reference
for creating and exporting shapes using the gameSpace/
truespace DTS exporter. It is not a quick start guide for
how to use gameSpace nor is it a detailed tutorial on how
to build and animate shapes in gameSpace for the Torque
Game Engine.

There are two file types that you can export: shapes (DTS)
and sequences (DSQ). A DTS file contains meshes, detail
levels, the bounding box, all necessary nodes for a par-
ticular shape and optionally animation data can also be
included in the DTS file.

DSQ files only contain animation data and require a match-
ing DTS file that contains all of the necessary nodes for
the shape. There can be multiple DSQ files for any one
DTS file. Also, DSQ files can be used on multiple DTS files
provided that the animation nodes in the DTS files match
exactly.

The exporter generates a log file named dump.dmp in
the directory you export your object to. If your export fails,
check the dump file first to see where it is crashing in the
export process. Most of the time it is something simple, like
spelling the word “bounds” wrong.

If a particular model is continually crashing on export, cor-
rupted meshes, bad texture vertices, or double faces in the
model might be the cause. Check the dump file, and if it
stops on a particular mesh, do a test by adding “_” to begin-
ning of the object name, then try to export again. (objects
with _ at the beginning are ignored by the exporter)

After a model is successfully exported, check your shapes
in the Torque ShowTool first before bringing them into your
game. If it works in the ShowTool but not in the game, the
file exported properly and the problem exists elsewhere.
What is required for a shape to work “in the game” is not
the same as what is required for a shape to export.

Getting Started

Installation
Run the installer for the gameSpace/trueSpace DTS
exporter and then run gameSpace or trueSpace and click
on the install extension icon (the 3d plugin icon). From the
dialog select the DTS plugin from the directory you installed
it to and click the open button. You should now see the DTS
icon in your tool bar.

Left clicking the exporter icon will export all of the objects
in your scene as a DTS file and any sequences setup in
the file will be stored inside the DTS file. Right clicking the
exporter icon will export all of the sequences in the scene
as one .DSQ file containing all of the sequences setup in
your scene.

2

trueSpace/ gameSpace - Torque DTS Exporter Documentation2 trueSpace/ gameSpace - Torque DTS Exporter Documentation 3

Getting Started

Using the Scene Editor
Using this exporter requires that you learn how to create
a DTS hierarchy using object grouping in gameSpace or
trueSpace. The easiest way to do this is by using the Scene
Editor. By default the Scene Editor icon is located in the
upper left corner of the screen near the animation playback
controls.

With the Scene Editor open on the left pane you will see
a listing of all of the objects in your scene. Dragging any
object in the Scene Editor onto another object in the Scene
Editor will create a group that contains both objects. You
can also drag other objects from the scene root onto the
group to add more objects to the group or drag one group
onto any other group. Also, in order to move a grouped
object to a new group you must first drag the object to the
scene root and then to your target group.

You need at least two objects in order to create a group in
the Scene Editor, but sometimes your shape setup may
require you create a group that contains only one object.
To do this create a mesh object such as a simple box and
name it “_dummy”. Objects named “_dummy” are ignored
by the exporter. Use this dummy object to create any group-
ing you need in order to export your DTS shape properly.

If you don not see your changes in the Scene Editor right
away, you can right click on the scene view pane and select
the option “refresh” to update the scene editor view port.

Using Object notes
There are many custom object properties that must be
configured in order to export your DTS shape and DSQ
animation files. These custom properties are stored in the
object notes of the various objects and helper objects in
your scene.

To open the object notes editor click and hold down on the
Object tool icon. (the arrow icon) Select the top icon from
the flyout menu to open the object note editor. If you also
have the Scene Editor open clicking on any object in the
scene editor will display the object notes for the current
selected object.

There are two types of object properties that can appear in
the object notes. A property name followed by a space and
a number. For example: “startFrame 0” Or a property name
followed by a boolean state (true or false). For example:
“twoSided true”.

Only one property name and value pair should appear on
each line in the object notes. You can also create com-
ments for yourself in the object notes by adding “//” to the
beginning of the line. Everything after // is ignored to the
end of the line. For example. “// Note to self......”.

trueSpace/ gameSpace - Torque DTS Exporter Documentation4 trueSpace/ gameSpace - Torque DTS Exporter Documentation 5

Getting STARTED

Skeletal vs object animation
There are two primary ways to create animation in the
DTS format.

Skeletal animation is where bones (nodes) deform a mesh
using vertex weights. (The orc character from the Torque
demo is a good example of skeletal animation)

Object animation is where the individual objects that make
up your DTS shape can each have independent scale,
rotation, translation and visibility animation. (The crossbow
weapon from the Torque demo is a good example of object
animation)

Positioning the axes of objects
When animating objects often times you will need to move
the axes of your object(s) from its center to the point in your
object that it should rotate from.

Your bounds object should have its axes centered and at
the bottom (usually 0,0,0) as this is the point where the
object will come to rest on the terrain.

When using skeletal animation the axes of your highest
detail mesh should have its axes at the same z value as
your bounds, other wise you can get node offsets where
the mesh is lower or higher than the nodes that should be
deforming it.

Exporting to .X to lock object scale
Using the object manipulation tools in gameSpace or
trueSpace doesn’t actually change the physical size of an
object, instead these tools apply a scale factor to the X, Y,
and Z axes of all objects.

Since there is apparently no way in gameSpace or
trueSpace to freeze the scale transforms of an object
before export you must export your objects (including the
bonds) from gameSpace to the .X format and then load the
objects back into gameSpace. The .X exporter recalculates
the vertex positions and recalculates the scale transforms
applied to exported objects. Doing this will allow your ob-
jects to export at the proper size.

To export your object to .X format. Select an object in your
scene or group all of the objects in your scene and select
the object group then click on the file menu and choose:
“save as object” and choose the .X format from the file type
selector. Click the settings button in the save object window
and adjust the .X exporter settings to fit your needs. The
settings below are recommended as they seem to work
well.

After exporting your object load the exported .X object back
into gameSpace and delete your original objects from your
scene. The imported file is now a fixed size and no longer
contains scale transform information.

Axes of skined mesh and bounds at same z axes

trueSpace/ gameSpace - Torque DTS Exporter Documentation4 trueSpace/ gameSpace - Torque DTS Exporter Documentation 5

getting Started

Manipulating axes in gameSpace
The axes tool will display the axes for the currently selected
object. Once you use this tool, the axes become visible and
are themselves treated as an object; they are available for
rotation or scaling, without affecting the object itself. The
axes may also be moved as desired.

The object cannot be manipulated while this tool is active.
When activated, you are actually inside the hierarchical
structure of the object. In order to return to editing the ob-
ject, you must move up the hierarchy of the object, return-
ing to object edit mode. You may also use the up arrow on
your keyboard to accomplish this.

There may be times when you will have a multitude of axes
visible for a number of objects. They can visibly clutter your
scene. If this is the case, provided you are finished with
them, you can activate the Axes Tool, which will select the
axes for you. Once selected you can use the Axes Tool
again to cause the axes to disappear or use the Delete Tool
to delete the axes. This will not affect the object, it merely
removes the axes from sight. The axes can be brought
back at any time by using the Axes Tool again.

The normalize rotation tool is used to orient an object or
an object’s axes to the orientation of the World Axis. If the
object you are working with has been rotated and you wish
to return the object to a normalized state, select the object
and then use the Normalize Rotation tool to return it to the
World Axis orientation.

You may also normalize the rotation on an object’s axis only
(as opposed to the object itself). Selecting the Normalize
Rotation tool will normalize the rotation of the axes, without
affecting the object.

The normalize location tool will move either
the object itself or its axes to world origin
(0,0,0). It will not affect the object’s rotation or
that of its axes.

The move axes to center of object tool will
move the axes of an object to the center of
the object.

Parenting Objects
In certain objects, vehicles and player objects it becomes
necessary to parent objects or nodes to other objects or
nodes. In gameSpace there is no way to directly parent an
object to another object so there are several work arounds
you can employ to overcome this.

When you export a object to DTS two things are created for
each mesh object, a node that holds position and transform
(at the axes) and the mesh object attached to it. When you
cull out a node using a .cfg the mesh object attached to it is
then attached to the nodes parent.

There are only two types of objects in gameSpace that can
be considered parents in the scene hierarchy, Bones and
Groups.

Parenting with Bones
When an object is attached to a bone, that bone is consid-
ered the objects parent. When exporting non-skin meshes
attached to bones to create a parent child structure you can
add the nodes of your objects to the “never export” section
of your .cfg file and then your mesh objects will be attached
to their respective parent bones creating a parent child
grouping of the objects.

Parenting with Groups
When an object is in group in the hierarchy, that group is
considered the objects parent. Groups are normally culled
out by the exporter because they are not mesh objects, but
they do contain translation information and you can see
there location by selecting the group and clicking on the
axes icon to show its axes.

Just like you can do with rigid objects attached to bones
you can add the meshes node to the “never export” list in
the .cfg file and then add the groups name to the “always
export” list in your .cfg file. You mesh object will now be
attached to its parent (the group) and any additional nested
groups containing objects that are added to the appropri-
ate places if the .cfg file would be part of the parent child
hierarchy of your DTS shape as well.

trueSpace/ gameSpace - Torque DTS Exporter Documentation6 trueSpace/ gameSpace - Torque DTS Exporter Documentation 7

Configuring DTS Material Properties

Object Triangulation
Triangulation is handled automatically by the exporter. un-
less you prefer implicit control of the triangles in your model
it is fine to leave the objects in the scene as quads as the
exporter uses functions in the TSX SDK to return a triangu-
lated version of the objects in the scene at export and the
objects in you scene are left as they are.

Materials For Torque
All materials must use image textures in the Color channel.
Procedural textures and material colors are not supported
in Torque. Torque supports JPG, TGA, and PNG texture
formats.

Image file dimensions must be powers of two (e.g.
256x256, 64x64, etc). The maximum size supported is
512x512. Textures do not have to be square (e.g. 64x128).
Multiple textures on a single mesh is supported.

Your shape should be properly UV mapped and textured
with image based textures. Procedural textures, decals, and
solid colors are not supported in the DTS format.

Default Material Setup
Open the material editor and if its not already, expand it by
clicking on the blue triangle on the right side of the material
editor window.

Right click on the color shader and load the texture map
shader from the color shader selector. Left click on the
texture shader to load the texture for your object into the
texture map shader.

Click on the blue sphere at the top of the color shader and
select plain transparency from the menu.

Right click on the reflectance shader and select an environ-
ment map shader from the reflectance shader selector.

In your environment map shader use these settings
Set the luminance slider to 0
Set the diffusion slider to max
Set the shininess slider to 0
Set the specular slider to 0

Note: This exporter supports the use multiple textures on
your DTS object. On aper face or per distinct object basis.
In game performance issues can arise depending on the size
and number of textures on your object.

This will create a neutral texture only setup for the DTS
export. Leaving the color shader as a solid color will create
a DTS without materials.

Texture Priority
When working with materials it is important to note that the
DTS format does not store the file extension of textures in
the DTS file, only texture name. Because of this the pres-
ence of a JPG file and a PNG file image file with the same
name (like “surface.png” and “surface.jpg”) will cause the
engine to choose the texture file type by texture priority.

Since JPG has higher priority than PNG it will always be
used first. This can cause problems if you are attempting to
use transparent textures because the JPG is used first and
it contains no transparency information.

trueSpace/ gameSpace - Torque DTS Exporter Documentation6 trueSpace/ gameSpace - Torque DTS Exporter Documentation 7

Detail Mapping
Detail maps allow you to blend two textures together The
detail material is scaled by the detail scale setting before
being blended with the base material. (not supported yet)

Mipmap Control
By default, all textures are mipmapped but you can add
properties to the .cfg file to change how mipmaps are
generated.

+Materials::NoMipMap
Use this if you don’t want to mipmap any textures.

+Materials::NoMipMapTranslucent
If you want textures to mipmap, but not translucent textures.

Translucent textures that do not tile are now, by default,
considered “zeroborder” textures -- that is, we assume that
there is a blackborder around the texture and we enforce
this in the mipmap. This is normally what one wants,
because otherwise streaks occur when off-tile parts of the
face are drawn.

-Materials::ZapBorder
If you don’t want to do this to your non-tiling translucent tex-
tures, then you can set: (as mentioned it is true by default).

DTS Material Properties
Self Illumination
Set the luminance slider to max, Self Illuminate is turned on

Environment Mapping
Set the reflection to max ; reflection is turned on
Reflectivity is based off of the alpha channel of texture
loaded into the environment map shader.

Translucency/Transparency
To make an object translucent, the texture on the object
must have an alpha channel. The amount of transparency
is controlled by the images alpha channel. Applying an
image file with an alpha channel to the Color attribute of a
material will automatically apply the images alpha channel
to the same materials Transparency attribute.

Material Transparency
Set the transparency slider to 0.5 to turn on material trans-
parency. Transparency is based off of the textures map
alpha channel

Subtractive Transparency
Set the transparency slider to 0.5 to turn on transparency.
Set specular > 0 but < 1 ; Then Subtractive is on
Transparency is based off of the texture map alpha channel

Additive Transparency
Set the transparency slider to 0.5 to turn on transparency.
Set specular = 1(max) Then Additive is turned on
Transparency is based off of the texture map alpha channel

wrapU false/true
By adding the property “wrapU true” or “wrapU false” to the
object notes of any mesh shape in your scene you can en-
able or disable texture tiling in the U direction.

wrapV false/true
By adding the property “wrapV true” or “wrapV false” to the
object notes of any mesh shape in your scene you can en-
able or disable texture tiling in the U direction.

twoSided true/false
Double-sided materials are supported by adding “twoSided
true” to the object notes of your target object. The twoSided
attribute is a boolean value that determines whether or not
the shape will export with double-sided materials.

Envrionment Mapping

Transparency

configuring DTS Material Properties

Using the Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation8

Using The Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation 9

The DTS Hierarchy
All Torque scenes must contain the following objects at the
scene root level in order to export properly: a bounding box
named bounds and the DTS hierarchy.

The bounding box defines the shapes orientation and posi-
tion in the world. Without the bounding box, the scene will
not export.

The DTS hierarchy is a group in the scene root (base01)
that contains at least one detail level marker (_detail#) and
at least one additional group with children (start01) that
has geometry somewhere in its sub-hierarchy and/ or a IK
group that deforms a mesh.

A detail level marker indicates to the exporter what detail
level mesh should be drawn at a given distance. The num-
ber following the name of an object corresponds to the pixel
size in the game engine at which the shape will be drawn.

The shape branch of the DTS hierarchy corresponds to the
actual DTS shape that will be exported. The whole subtree
can be under one branch or there can be multiple branches.
(shape01, shape02, etc.)

If you have one shape at the root level that you want to
export (e.g. a static shape), an example scene hierarchy
should look like this:

The shape branch of the DTS hierarchy will look different
if you are using a skeleton to deform a mesh (e.g. a single
mesh character). In this case the IK group becomes the
shape branch along the mesh and any detail levels should
be at the scene root level. Here is what a simple hierarchy
with a skeleton might look like:

To create a proper DTS hierarchy shapes must be properly
named and in the right place in the scene hierarchy. Here
are the locations where shapes and helper objects should
go in the DTS hierarchy.

The bounds, sequence helpers and secondary detail
meshes should all be at the scene root.

The first group in the DTS hierarchy (base01) should
contain detail level markers (_detail64), collision markers
(_collision-1), loscollision markers (_los-9) and the shape
branch group. (start01)

The shape branch group (start01) should contain your
highest detail meshes, IK groups, collision meshes (col-1),
loscollision meshes (loscol-9) and named nodes. (_mount0)

Using the Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation8

Using The Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation 9

The Bounds
Each scene must contain a bounding box. If you fail to
create a bounding box within your scene, the scene will not
export. You must also name the bounding box bounds.

When you create the bounding box, you are creating a
mini world that defines how the object will orient itself in
the game. It is important to note that the orientation of the
bounding box defines the orientation of the object. Positive
Y is forward, and positive Z is up.

The bounding box should be a box that completely enclos-
es the shape at all points in the animation. When you export
your scene, the pivot point of the bounding box will become
the pivot point of your shape in the exported scene.

Ground transform is based on the animation of the bound-
ing box. So if you want to export a running person, you
would place the bounding box around the person at time
0, with the origin of the box at the character’s feet. As the
person runs, you would animate the bounding box to keep
pace with the person.

Detail Levels
All shapes that are to be rendered in the Torque engine
must also have a detail number at the end of their name.
This number corresponds to the pixel height at which the
shape will draw.

For example: Shape128 – this naming tells the exporter
that this object named “shape” is drawn when the object is
greater than 128 pixels high on screen.

Each detail number must have a corresponding detail
marker that shares the same number. The base name for
all the shapes must be the same, with the only difference
being the detail number. Detail markers are named “_de-
tail#” and there must be one marker for each unique detail
number in your scene.

Only the highest detail meshes should be linked to the
shape subtree. The other detail meshes should be left at
the scene root level. At export time, the “loose” meshes
are collected and the transforms of the detail meshes are
discarded and the transform of the corresponding shape in
the subtree is used.

For example: if you have three detail meshes for a par-
ticular shape named shape128 , shape 64, and shape2,
you must also have three detail markers named _detail128
, _detail64, and _detail2. Shape128 should be a child of
start01, while shape64 and shape2 are at the scene root
level. All of the detail markers should be added to the group
base01.

When the shapes size on screen is 128 pixels or greater,
the shape with the detail number of 128 will be drawn.
When the size is between 64 and 128, the shape with
the detail number of 64 will be drawn. Likewise, when the
shapes size is between 2 and 64, the shape with the detail
number of 2 will be drawn. When the size is less than 2,
nothing is drawn.

AutoDetail Levels
AutoLod works for rigid object and
skinned objects. Create your detail
markers like you normally would. In the
object notes for the highest detail
object add

 numAutoDetails #
 autoDetailSize# size
 autoDetailPercent# 0-1

You need to have an entry for every
detail level that you don’t create by
hand.

If you have a shape Sphere128 and
billboard Sphere2 with the following
detail markers 128,64,32,2 you would
add the following to the object notes of
your highest detail

 numAutoDetails 2
 autoDetailSize0 64
 autoDetailPercent0 0.8
 autoDetailSize1 32
 autoDetailPercent1 0.6

Using the Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation10 trueSpace/ gameSpace - Torque DTS Exporter Documentation 11

Collision Objects
There is no correct way to make collision objects for the
Torque engine. It all depends on how your programmer
wants to implement collision detection. Several games
have used this engine and they all used different collision
schemes. Different collision schemes can be different for
different shapes as well. Some shapes use simple sphere
collision that is derived from the bounding box, some have
custom-built collision shapes. Vehicles tend to have custom
collision shapes.

Custom collision shapes can be created by assigning a
negative detail number to the shape and creating a corre-
sponding collision marker. Shapes with negative numbers
will export but not draw.

The Torque Game Engine presently uses detail markers
named _collision-# with the mesh shapes named col-#.
The shapes must be convex hulls (no concave surfaces).
Collision markers must be children of base01 (same level
as detail markers). Collision meshes should be in the shape
subtree. (start01)

Here are the naming conventions:

Collision-1 to Collision-9
These are collision markers. (linked to base01)

Col-1 to Col-9
These are the actual collision meshes. (linked to start01)

LOS-9 to LOS-15
Markers for line of sight collision (linked to base01)

LOScol-9 to LOScol-15
Collision geometry for los collision. (linked to start01)

Keep the collision meshes as low in polygon count as pos-
sible, because collision can be processor intensive.

Vehicles are limited to ONE collision mesh for the collision
shape Also, pay special attention to the way the collision
geometry is shaped to minimize collision with small bumps/
hills/slopes etc. Changing this shape will dramatically effect
whether or not the vehicle is prone to getting stuck while
driving over bumps.

Billboards
Billboard are objects (usually 2d) that always face the
player. Adding a billboard or billboardz flag to an object
name will cause the exported object to be exported as a
billboard and always face the player.

bb:: Tells the exporter an object always faces the player.

bbz:: Tells the exporter that an objectson always faces the
player on the Z axes.

Parts of a shape can be billboard objects (i.e., they always
face camera). For example, you could have an explosion in
which shrapnel flies out from the center and also have little
explosion balls fly out that are just flat polygons that always
face you.

Billboard Detail Levels
The highest detail level of a shape could be a compli-
cated 3d shape, whereas the lowest detail could just be
a billboard. If the highest detail level of an object is called
“Obj256” say, then”BB::Obj64” would be a lower detail level
of that shape. Similarly, if the highest detail level is “BB::
Obj256” then”Obj64” would be a lower detail level version
of this.

AutoBillboard Detail Levels
Auto billboard generation is configured using several prop-
erties that can be added to the object notes of your Highest
detail level.

bb::equator_steps #
bb::polar_steps #
bb::polar_angle #
bb::dl # (size)
bb::dim #
bb::include_poles true/false

Using the Features Of The DTS Format

trueSpace/ gameSpace - Torque DTS Exporter Documentation10 trueSpace/ gameSpace - Torque DTS Exporter Documentation 11

Mesh Sorting
Translucent drawing with depth tests gets very tricky. If
polygons are drawn back to front, depth tests and translu-
cency behave well together. But when some polygons in the
front are drawn first, things start to get very messy. Imagine
what would happen if you had a fully translucent texture
(alpha of 0) drawn first, and that it fully covered the camera
and was in front of everything else. Since the alpha value
is zero everywhere, it would not draw to the RGB channels.
But the depth value would still be updated for the entire
screen. Now everything that was drawn would fail the depth
test. The result is that you would see a blank screen no
matter what you draw behind our phantom polygon.

Because of this issue, translucent polygons are normally
drawn with special care: the depth value is not saved but
the depth test is still used. Translucent polygons are drawn
after non-translucent polygons, and translucent polygons
are drawn from back to front. The result is that translucent
polygons behave when they overlap each other because
they are drawn back to front. Translucent polygons behave
when overlapping non-translucent polygons because they
only drawn when they are in front of the non-translucent
polygons (remember, the depth test is still carried out, the
depth value just isn’t stored). The phantom polygon issue is
avoided because the depth value isn’t stored.

The faces of these objects are presorted so that faces are
drawn from back to front. This is used to force the sorting
order of translucent objects (which are not z-buffered) This
sometimes involves splitting faces and sometimes involves
different orders depending on where the camera is.

To make an object a sort object, begin its name with “SORT:
:”. Other detail levels of this object do not have to be sort
objects, so “SORT::Head128” and “Head64” would be con-
sidered detail levels of “Head”, the first being a sort object
but the second not. You can also give the exporter some
hints on how to create the sort objects.

You supply these hints by adding properties to the object
notes of your sorted objects. The properties are:

 max_depth #
 num_big_faces #
 write_z true/false

(Default values for these are 2, 4, and false respectively.)

 z_layer_up true/false
 z_layer_down true/false

Used to sort objects with “leaves” that are layered from top
to bottom either facing slightly up or down. Will usually be
used with MAX_DEPTH.

Types of Animation Supported
Transform animation:
Allows the export of object animation (position and rotation)
and node animation. (skeletal animation)

Morph animation:
This will force the exporter to export all mesh animation as
a series of mesh snapshots. (vertex animation) This is use-
ful for certain types of animations but produces huge files
and doesn’t contain animated nodes (bones). You should
never use morph animation unless you are absolutely sure
you need it.

Visibility animation:
Allows animation of object visibility. Objects in the DTS file
can disappear and reappear or blend from solid to transpar-
ent and back.

Scale Animation:
This is the animation of object scale. Don’t use this unless
you need it, as it adds additional strain on the animation
system.

Texture animation:
Enables animation of Texture Coordinates. This is useful for
things where the texture itself must animate. Scrolling com-
puter monitors, waterfalls, and tank treads are just a few of
the applications for animated texture coordinates.

IFL animation:
Allows you to use IFLs, or Image File Lists. These are a
sequence of image files that are loaded frame by frame to
create animated textures.

DTS Animation

trueSpace/ gameSpace - Torque DTS Exporter Documentation12 trueSpace/ gameSpace - Torque DTS Exporter Documentation 13

Animating for Torque
There are two methods for exporting animation into the
game. One method is to animate all of the sequences in
one file and export it as a DTS file. The other method is
to separate each sequence into its own scene file, export
them as DSQ files, and then merge them together at run-
time with a .CS file.

Having the base mesh and skeleton in one scene file and
having each sequence contained in its own scene file is
the preferred way to do this because it gives more control
of the nodes being exported and allows more control of the
character.

For simple shapes with only a few animations, putting all
of the sequences in the main scene file will work fine. For
characters, it is recommended that you save each anima-
tion sequence in its own file and export the sequences as
DSQs.

Sequence Markers
Sequence markers tell the exporter how to export anima-
tion data over a given range of frames. They are required if
animation is to be exported. The sequence marker contains
a variety of information such as the name of the animation
sequence, start and end frames, cycling and blend informa-
tion, and frame rate.

Sequence Markers are actually just mesh objects with
custom properties and are placed at the scene root level.
The naming convention for sequence nodes is _sequence:
:<name>. Sequence nodes must always be prefixed with
_sequence::, otherwise they will not be exported.

To create a Sequence Marker, create any mesh object (like
a box) and rename the object “_sequence::<name>”. Select
the object and open the object notes to add your custom
node attributes.

Sequence Marker Attributes
startFrame # (default is 0)
The first frame of the sequence.

endFrame # (default is 0)
The last frame of the sequence.

cyclic true/false (default is true)
If turned on, the sequence will loop. If turned off, the se-
quence will play once then stop.

blend true/false (default is false)
Makes the sequence a blend animation.

blendReferenceFrame # (default is 0)
The reference frame number for the blend animation.

overrideDuration # (default is -1)
Changing this attribute alters the speed and duration of the
ground transform of the shape. The same keyframes will be
used, but they will be played at different times.

numFrames # (default is 0)
Number of keyframes for the sequence.

frameRate # (default is 30)
The frame rate for the sequence.

groundNumFrames # (default is 0)
Number of keyframes for the ground transform.

groundFrameRate # (default is 10)
Frame rate for the ground transform.

priority # (default is 5)
Controls what sequence will control a node when two se-
quences want to control the same node.

ignoreGround true/false (default is false)
Should ground transform be exported for this sequence.

DTS Animation

trueSpace/ gameSpace - Torque DTS Exporter Documentation12 trueSpace/ gameSpace - Torque DTS Exporter Documentation 13

Enable/Force Animations
enableMorph true/false (default is false)
This will force the exporter to export all mesh animations as
a series of mesh snapshots. This is useful for certain types
of animations, but it will produce large files and does not
contain animated nodes.

enableTVert true/false (default is false)
Enables or disables animation of texture coordinates.

enableTransform true/false (default is true)
Enables or disables export of transform animation.

enableVis true/false (default is true)
Enables or disables visibility animation.

enableScale true/false (default is true)
Enables or disables object scale animation.

enableUniformScale true/false (default is true)
Enables or disables export of uniform scaling.

enableAlignedScale true/false (default is true)
Enables or disables export of aligned scaling.

enableArbitraryScale true/false (default is true)
Enables or disables export of arbitraty scaling.

enableIFL true/false (default is true)
Enables or disables export of IFL animation. These are text
files that list sequences of images files.

forceMorph true/false (default is false)
forceTVert true/false (default is false)
forceVis true/false (default is false)
forceTransform true/false (default is false)
forceScale true/false (default is false)

Visibility Animation
Visibility animation is created by adding visibility keyframe
states to an objects notes or by keyframing object vis-
ibility. Visibility animation is supported by adding a custom
attribute named visibility to the object notes. The visibility
attribute should be a float value with a minimum value of 0
and a maximum value of 1. The syntax for using visibility is
“visibility(keyframe) value”

 Visibility animation example:
 visibility0 0.2
 visibility1 0.3
 visibility2 0.4
 visibility3 0.5
 visibility4 0.6
 visibility5 0.75

IFL Animation
An IFL is text file where each line describes the texture to
use, and the duration (in frames) to display it.

 Example IFL file contents:
 texture001 2
 texture002 3
 texture003 1

To use IFL: copy the first image in the sequence and
rename it to match the name of your .ifl file (example:
explode_ifl.jpg) apply this texture to your object. The actual
.ifl file must exist in the same directory as you scene file to
export properly.

Ground Transform
Animation sequences that move the character must have
ground transform. The engine knows that the character
has a specific velocity in all directions (this is set in script).
When the animations are being played, the engine is aware
of what the distance covered is and plays the appropri-
ate animation. If, for instance, the forward velocity of the
character increases past the point of a walk animation to
the speed of a run, it will transition to the run.

The exporter figures out the ground transform (meter per
sec over x distance) by determining how much the bound-
ing box has moved over the course of the animation. This
is done automatically on export. You can allow the exporter
to set the keys (frameRate), or you can set it to sample the
distance covered explicitly by telling the sequence to use N
frames and sample at the beginning and end of the anima-
tion (groundFrameRate). Use N frames is on by default and
should be sufficient for most applications.

If you have no ground transform, the animation will not play
when the character moves. The default character’s forward
ground transform is approximately 4 m/sec.

DTS Animation

trueSpace/ gameSpace - Torque DTS Exporter Documentation14 trueSpace/ gameSpace - Torque DTS Exporter Documentation 15

DTS Animation

Threads
To fully understand the animation system in the engine,
one must realize that several animations (called threads in
the engine) can be played concurrently, at different speeds
in both directions, and can control different parts of the
hierarchy. If two threads try to control the same node, the
sequence priority will determine which thread controls a
particular node.

In practice, the best way to go about doing things is to
export different types of animation to control different parts
of the character, and then have them hooked up to different
controls. In the game, you can look around while running.
Instead of having a run-look-left, run -look-middle, or run-
look-right, there are individual run and look animations that
are being played at the same time. In this way, you can get
a great deal of flexibility out of very few animations.

The look animations are controlled by the mouse (running
on one thread) while movement is controlled on another
thread which is playing the lower body animations (forward,
back, side). Celebration and death animations control the
whole body and are played on the same thread as the body
movement animations.

Viewing multiple threads is the ShowTool will be covered in
greater detail in the ShowTool section.

Blend Animations
There are special sequences that can be marked as blend
animations. These allow additive animation on the node
structure of the shape. These will not conflict with other
threads, and can be played on top of the node animation
contained in other threads.

Blend animations are relative. Blends only read the
changes that occur over the course of the animation and
not the absolute position of the nodes. This means that if a
node is transformed by a blend animation, it includes only
the transform information for that node, and it will add that
transformation on top of the existing position in the base
shape (the DTS).

If a sequence is a blend, the transforms will be added on
top of the other animations playing in the engine on a node
by node basis. Only the animation values are added.

Bear in mind that a blend can be played as a normal
sequence, or it can be played on top of other sequences.
When another sequence is playing, it will alter the root posi-
tion, and the blend will be applied on top of that.

If you try to do a blend sequence where the root position
is different than the ‘normal’ root (in the default root anima-
tion), you might expect that the blend will blend it to the new
root (the position the character is positioned in during the
blend animation). However, it does not work this way. Since
nothing would actually be animating, it doesn’t move the
bones to the new position. What is contained in the blend
sequence is only transform offsets from the blend sequence
root position.

It is a good idea not to have a different root position in your
‘normal’ animations and your blends, as they can easily get
out of sync.

Blend Reference Time
You can determine the position that the blend animation
uses for the animation offset by using the blend reference
time.

The values added from the blend animation are based off of
the root position in the DSQ file. This root position does not
have to be the beginning of the animation. You can pick any
position for the blend animation to reference.

This is useful, because you can have a blend animation
that can have a reference position that is the ‘root’ position.
For animation like hip twists and arm movements (as in the
‘look’ animation), the character can be in a natural default
state. In this way, you can have one animation control the
character through the base pose to an extreme in either
direction while referencing the default ‘base’ state, which
will exist somewhere in the middle of the blend animation.

You can set the blend reference position either by enter-
ing the blend reference frame number in the appropriate
sequence node or by leaving your character in the root
position at frame 0 (the default reference position) and then
animating the extreme positions after that in a sequence
that starts after frame 1.

trueSpace/ gameSpace - Torque DTS Exporter Documentation14 trueSpace/ gameSpace - Torque DTS Exporter Documentation 15

DTS Animation

Configuration Files
Configuration (.CFG) files are text files that allow you to
specify how shapes and animations are exported. When
you export a shape, the exporter looks for a file called
<fileName>.cfg in the same directory as your DTS file is
being exported to. The configuration file can contain several
keywords that determine which object are exported and
which objects are ignored as well as export parameters.

There are three lists that can be in the configuration file:
AlwaysExport, NeverExport, and NeverAnimate. Node
and object names are placed into one of those three lists.
By default, all objects are implicitly placed into the Alway-
sExport list. Names can include wildcards (*) to simplify
writing configuration files. Lines with + or - along with the
parameter name turn on and turn off boolean parameters.
Lines with = set the value of valued parameters (note: the =
occurs at the beginning of a line).
If a node’s name matches a name on the NeverExport list,
that node will not be exported. Any meshes that are children
of that node will be parented to that node’s parent (or its
parent’s parent if the parent is also on the NeverExport list).
If a node is on the AlwaysExport list, it will be exported even
if there are no meshes on the node, and even if the name
matches a name on the NeverExport list. The AlwaysExport
list takes priority over the NeverExport list. If a node is on
the NeverAnimate list, its animation will not be exported
even if it contains animations.

For example, assume that the following lines are in a
configuration file:

 AlwaysExport:
 mesh*

 NeverExport:
 submesh*

This configuration file would export all nodes that have
names beginning with “mesh” and ignore all nodes begin-
ning with “submesh”.

An example configuration file with all parameter names are
included with the sample files.

Using .CFG files to control DSQ node structure
By default, all transform animation in a shape during a
sequence is exported. If a node differs from the default

position in a sequence then the transform on that node is
considered animated even if it is unchanging throughout the
sequence. The default position for all nodes is determined
by the node position at frame 0 in the scene file. If Collapse
Transforms is on, non-animating nodes will be collapsed
out. If not, all nodes will be exported whether they animate
or not, and as such, will be considered animating.

It is preferable to use .CFG files to determine which nodes
are being exported to a particular thread, force export of
needed nodes, manually cull out useless nodes (or ones
with potential conflicts), and otherwise take steps to ensure
that threads do not fight for control of the same nodes.

By using .CFG files, you can, for instance, animate and
export animation for the lower body only and then other
animation for the upper body only. When played in the
ShowTool, the two threads will play without conflicts.

By explicitly culling out certain nodes, you can ensure that
conflicts do not occur. Often the nodes that do not appear
animated are indeed animating. This is especially true when
using IK to animate, as the transform values of a node may
be animating, but it might not be visible.

So, the ideal situation is to separate your animations into
different types: full body, upper body only, lower body only,
arms only, hands only, facial animation only, etc.

Create a separate directory for each animation type and
make a custom .CFG for each type, culling out the un-need-
ed nodes in the NeverExport list. Remember that the .CFG
does not need to be named dtsScene.cfg. You can (and
should) name them appropriately for the type of animations
you are exporting.

Alternately, you can use Sequence Priority to determine
which thread controls a node when conflicts occur, but this
is a somewhat clunky way to deal with the situation. It is
better to use the .CFG files to control the node structure of
your .DSQ files to ensure there are no conflicts.

It is a good idea for all of the shapes to be in or pass
through a root pose that is the same in the DTS and all of
the DSQ files. This will insure that all the animations line
up properly. This can be as simple as making sure that
the pose in frame 0 of all of the scene files are exactly the
same.

trueSpace/ gameSpace - Torque DTS Exporter Documentation16 trueSpace/ gameSpace - Torque DTS Exporter Documentation 17

DTS Animation

Player Sequences
What follows is a listing of the different types of animations
that were used to create the default player.

Normal Full Body
These animations are what you would consider to be ‘nor-
mal’ animations, with all the nodes exporting and controlling
the entire skeleton.

 Root
 All Sitting
 All Death Animations
 All Celebrations
 All Salutes
 All Taunts

Lower Body Only
These animations are exported with node control to isolate
the nodes in the lower body of the character.

 Forward
 Backward
 Side (this animation is played forward or reverse)
 Fall
 Land
 All Jumps

Blends
These animations are blend animations that are designed
to be played on top of movement animations and exist in
the same directory as the full body animations, but are set
to blend in the sequence node.

 All Look
 Head left/right
 Head up/down
 Recoil

Note that these sequences go from one extreme pose to
another with the blend setting. The sequence is usually
initialized to start in the middle and play either forward or
backward from this state by the engine. The engine deter-
mines the position of the animation based on the mouse
look.

Vehicles Sequences
turn: Each wheel needs a turn sequence, this controls the
steering.

spring: Each wheel needs a spring sequence, This controls
the up/down motion of the wheel (like shocks)

wheel: Each wheel needs a wheel sequence, ie. Wheel0,
Wheel1, etc. This controls the spinning of the wheel.

Weapon Sequences
activate: Animation that is played when the weapon is
activated and placed on the player

deactivate: Animation that is played when the weapon is
deactivated and put away.

fire: Animation that is played when the player would fire the
weapon.

noammo: Animation that is played when the player has no
available ammo.

reload: Animation that is played when the player is reload-
ing the weapon.

Crossbow Activate

trueSpace/ gameSpace - Torque DTS Exporter Documentation16 trueSpace/ gameSpace - Torque DTS Exporter Documentation 17

DTS Animation

Triggers
Triggers are arbitrary markers to can be used to call events
on specific frames in a sequence. An example of a triggered
event is calling footstep sounds and footprints during walk
and run animations. Because triggers are related to anima-
tions, they are added to their respective sequence markers
object notes.

numTriggers #
The number of trigger state changes in this sequence.

triggerFrame(keyframe#) #
The frame number on which the trigger occurs.

triggerState(state#) #
The state of the trigger. (on or off)

numTriggers is the number of trigger state changes associ-
ated with a given sequence.

triggerFrame is the frame number in the sequence on which
a trigger event occurs.

triggerState defines the state of a trigger on a given trigger-
Frame. There can be up to 32 trigger states each with their
respective on (1 to 32) and off (-1 to -32) values.

What each of those trigger states means is up to you. You
should work with your programmer to define what the trig-
ger states mean and how you should work with them.

For example, you could have one trigger for each foot of a
character that creates a footprint when the foot is down on
the ground. Let’s say that a triggerState of 1 is the left foot
down and a triggerState of 2 is the right foot down. When
the sequence plays the frame during which the left foot
touches the ground, you could have a trigger on that frame
that has a triggerState of 1 to create a footprint. You would
then create another trigger with a triggerState of 2 for the
right foot is down.

You don’t necessarily need to turn off the footprints (let’s
assume that the programmer will turn off when it is neces-
sary), but you could by creating two more triggers with
triggerStates -1 and -2 to turn off the triggers.

 Trigger Example:

 // # of trigger state changes
 numTriggers 4

 // first state: keyframe 3 trigger 1 on
 triggerFrame0 3
 triggerState0 1

 // second state: keyframe 4 trigger 1 off
 triggerFrame1 4
 triggerState1 -1

 // thrid state: keyframe 5 trigger 2 on
 triggerFrame2 5
 triggerState2 2

 // fourth state: keyframe 6 trigger 2 off
 triggerFrame3 6
 triggerState3 -2

The attributes for triggers will change depending on the
number of triggers on the sequence node.

There is one triggerFrame and triggerState per trigger.
Trigger numbering starts at 0.

For example, triggerFrame0 and triggerState0 are the first
trigger, triggerFrame1 and triggerState1 are the second
trigger, etc.

Foot prints on the terrain

trueSpace/ gameSpace - Torque DTS Exporter Documentation18 trueSpace/ gameSpace - Torque DTS Exporter Documentation 19

Named Nodes
Named nodes are position markers in your DTS shape that
can be either static or animated and are used to create
mountpoints, camera positions and other special location
markers.

Named nodes are created by adding a simple mesh object
(like a box) to you scene, naming the object with an _ at
the beginning of the object name (_mount0) and adding the
object to the shape branch of the DTS hierarchy. (start01)
Only the position, rotation and any animation of the object
is exported, the mesh part of this object is culled out on ex-
port. You must also add named nodes to the always export
list in the .cfg file for your scene, otherwise they will not be
created when you export your DTS shape.

Eye and cam nodes are required for getting your character
working correctly in the default Torque engine. These are
special nodes referenced in code that determine where
the player point of view (POV) is and the rotation point for
the orbiting death camera. The eye node is used for the
first-person POV; the cam node is used for the third-person
POV. Both nodes can be parented to the head of the char-
acter (or wherever is most appropriate).

These are not required for the character to export, but they
are required in order for the character to be dropped in the
game and work as a player correctly. If they are not includ-
ed, the eye node will default to origin of the bounding box.

For weapons to mount correctly, the model must contain
mount points. The weapon is mounted to mount0. Without
it, the weapon will mount at the players bounding box origin.

Additional mount points may be added as needed. For
example, the default player in the Torque Game Engine
contains mount0, mount1, ski1, and ski2 nodes. Consult
with your programmer to determine what is needed for your
game.

Remember that all nodes (eye, cam, mount, etc) must be
present in both the base shape (DTS) and all sequence
files (DSQ). It is sometimes helpful to view the scene
through a node to make sure the node is oriented properly.
You can resize nodes as you wish only placement and
orientation are important.

Player Nodes
_cam: Required only for playable characters. The “cam”
node is used to tell the engine where to view the model
from if the camera perspective is placed into 3rd person
mode. Without this node you will view from the transform
coordinates of the “bounds” shape.

_eye: Required for playable characters, this node is essen-
tially just a set of transform coordinates that tells the engine
where to place the camera for viewing from 1st person
perspective.

_light#: Light Emitter node

_mount#: Mount nodes are used to tell the engine that
something can be attached to your model at this position.
For example you would use a mount node to tell the engine
where to place a weapon on your player model.

_ski#: Ski Marker node

Vehicle Nodes
_cam: Required only for playable characters. The “cam”
node is used to tell the engine where to view the model
from if the camera perspective is placed into 3rd person
mode.

_contrail#: This emitter creates contrails, which are those
little wisps that you see that emit from the tips of wings on
airplanes.

_eye: Required for playable characters, this node is essen-
tially just a set of transform coordinates that tells the engine
where to place the camera for viewing from 1st person
perspective.

_hub: For wheeled vehicles. Hub nodes are used to define
where a wheel DTS shape will attach to the mesh when it is
in the engine. Example use: hub0, hub1, hub2, hub3

_jetnozzle: This node tells the engine where to emit a jet
engine exhaust from.

_light: Light Emitter node

Using Named Nodes

trueSpace/ gameSpace - Torque DTS Exporter Documentation18 trueSpace/ gameSpace - Torque DTS Exporter Documentation 19

_smoke_node: These nodes denote the location of a
particle system to the engine. This particular particle system
emits particles based on the amount of damage that your
vehicle has taken.

_ground#: Each wheel needs a ground node, i.e. Ground0,
Ground1, etc. These tells the wheels where they touch the
ground.

_mass: Each vehicle needs a mass node. This should be
positioned at the center of mass for the whole shape. This
is used in the driving and flying dynamics.

_mount: Each vehicle needs mount nodes. These are
where the players and weapons mount. Here are the
names of the mount nodes and their function:

 mount0 - pilot
 mount1 - navigator\gunner
 mount2 - passenger
 mount3 - passenger
 etc..
 mount10 - gun
 mount9 - bomb mount

Weapon Nodes
_ejectpoint: This node tells the engine where to emit the
shell casing DTS file from when
the weapon is fired.

_mountpoint: This node tells the engine where to attach
the weapon to the player model. The weapon is attached
specifically at the location of the “mountpoint” to the corre-
sponding “mount” node on the player character.

If there is no mountpoint in the DTS file or if the node is not
exported, the engine will default to the origin (0,0,0) of the
DTS file when mounting.

_muzzlepoint: Weapon Muzzle Flash node. The “muzzle-
point” node tells the engine where to show the ‘flash’ or
‘bang’ DTS file when the weapon is fired.

The .CS Script file
At runtime, the DTS and DSQ shapes are merged together
to create a new shape that contains the mesh and all it’s
associated data (mountpoints, etc…) and the animations.

This is done by including a .CS file for the shape in the
directory with the DTS and DSQ file. The name of the .CS
file for the shape should be the same as the DTS file. For
example, player.dts has player.cs.

To construct a shape in engine, you start off with this at the
beginning of the file:

datablock TSShapeConstructor(PlayerDTS)

This tells the engine the name of the shape it is construct-
ing and is called in the engine.

Next the shape and animations are added.

{
baseShape = “./player.DTS”;
sequence0 = “./player_root.DSQ root”;
sequence1 = “./player_forward.DSQ run”;
sequence2 = “./player_back.DSQ back”;
sequence3 = “./player_side.DSQ side”;
sequence4 = “./player_lookde.DSQ look”;
sequence5 = “./player_head.DSQ head”;
sequence6 = “./player_fall.DSQ fall”;
sequence7 = “./player_land.DSQ land”;
sequence8 = “./player_jump. jump”;
};

The base shape is added, and then all the sequences are
added to the shape and given a number. All of the num-
bered sequences reference a file.

Names can be associated with the animations. You can
see these names in the ShowTool in ‘thread’ control. For
example, Sequence 0 is created in the shape, it uses
player_root.DSQ, and the name of the sequence is root.

When you create a .CS file for your shape, it is important
that the sequences are entered into the list in the correct
order. Animations are called by the engine by index number,
not by name.

Using .CS files

trueSpace/ gameSpace - Torque DTS Exporter Documentation20 trueSpace/ gameSpace - Torque DTS Exporter Documentation 21

The ShowTool
The ShowTool is simply a compiled Torque application that
is running without game information and with a very simple
UI. It is used to load and preview shapes and animations

The ShowTool can be accessed by putting the argument
-show when you launch the application. This can be done
from the command line, but it is easier to just add the switch
into a shortcut.

Loading a Shape
In order to view shapes in the ShowTool, the shape and
texture files must reside in a directory inside the Torque
project. If you are using the demo, you can place the files in
demo\data\shapes inside the Torque example directory.

After launching the ShowTool, you will see a black screen
with several buttons on the left-hand side.

To load a shape into the ShowTool, click the Load Shape
button, select a shape from the list, then click the Load
button.Your shape will appear in the middle of the window.
You can navigate around the shape by using the W, S, A, D,
E, C, X, and Z keys.

 Show Tool Movement Controls:

 W: zoom in
 S: zoom out
 A: rotate left
 D: rotate right
 E: rotate camera up
 C: rotate camera down
 Z: rotate camera left
 X: rotate camera right

Detail Levels
To manually view detail levels in the ShowTool, click the
Detail Control button to open the Detail Control window.

By default the detail control will be set to Slider Sets Detail
Level. Drag the slider to display the different detail levels.

Click the arrow button to switch to Auto Detail Using
Distance. As you zoom in and out, you will see the differ-
ent details levels change as the object gets closer to and
further from the camera.

Other useful information is contained in the panel, including
which detail level is being displayed and the polygon count.

Using the show tool

trueSpace/ gameSpace - Torque DTS Exporter Documentation20 trueSpace/ gameSpace - Torque DTS Exporter Documentation 21

Viewing Animations
You can manually load animations onto shapes by click-
ing the Load Sequence button. As long as the animation
sequence matches the shape, then the shape will animate
correctly

If the shape already has animations and is using a .CS file
to merge DTS and DSQ files, then the animations are au-
tomatically loaded into a thread. To view animation threads,
click the Thread Control button to open the Thread Control
window.

The Thread Control window allows you to playback and
test all of the animations in your shape. The sequences list
displays each animation for your shape using the name and
order that was designated in the .CS file.

You can view all of the shape’s animations by clicking
through the list of sequences. You can also add another
thread by clicking the New Thread button. This will give you
a second thread that can run another animation simultane-
ously to the animation running in the first thread. Normally,
multiple animation threads can be created for different parts
of the body. You can have one thread controlling the lower
body, a second thread for arms, a third for the head, etc.
Multiple full body threads are not normally used and can
behave unusually.

The threads can be controlled individually, started and
stopped individually, played at different speeds (using the
Edit Scale button), and transitioned individually on a thread
by thread basis. In code, animations can be controlled to
respond to the player input, play in reverse, play at different
speeds based on player input, and transitioned at different
speeds and over varied lengths of time, again, on a thread
by thread basis.

Transitions
Although you cannot explicitly export or set transition pa-
rameters from gameSpace, the engine supports transitions.
Transitions will transition from one sequence to another on
a node by node basis over a set period of time (which can
be varied). The transition is linear.

Using transitions allows the artist to animate without hitting
the root position accurately. The engine will transition from
one sequence to the other. This also allows for the engine
to transition from one sequence to another mid-sequence
(not returning to the root position). In this way, a character
can go from a run to a walk mid-sequence (e.g. the charac-
ter does not need to complete the animation) and the en-
gine will interpolate the node positions during the change.
Note that this can introduce some strange behaviors,
because the engine will take the shortest path to translate
the nodes to the next state.

To test how one sequence transitions into another, open the
Thread Control window then click the Transition button to
bring up the Transition Control window.

In the Window, the first arrow button will be set to Set Se-
quence. This means that the transition will pop to each new
animation as you click through the list in the Thread Control
window. Click the button to change the setting to Transi-
tion to Sequence. The sequences will now transition from
one sequence to the next as you select them in the thread
control window.

The other two arrow buttons allow you to play with how the
transition happens. By default, the second button is set to
Transition to Synched Position. This transition between the
sequences using a default value. You can press this button
to change the mode to Transition to Slider Position, which
allows you to use the slider to determine where on the
target sequence you want the transition to go to.

The last arrow button allows you to have the target se-
quence either play or pause during the transition. This is
rarely used and usually works better if the target sequence
is playing during the transition.

The Edit Duration button allows you to change how much
the transition takes to go from one animation to another.

Using The show tool

